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Abstract

The climate system and the global carbon cycle are tightly coupled. Atmospheric carbon in

the form of the radiatively active gases, carbon dioxide and methane, plays a major role in the

natural greenhouse e�ect. The continued increase in the atmospheric concentrations of these gases,

due to human emissions, is predicted to lead to signi�cant climatic change over the next 100 years.

The best estimates suggest that more than half of the current anthropogenic emissions of carbon

dioxide are being absorbed by the ocean and by land ecosystems (Schimel et al (1996)). In both cases

the processes involved are sensitive to the climatic conditions. Temperature a�ects the solubility

of carbon dioxide in sea-water and the rate of terrestrial and oceanic biological processes. In

addition, vegetation is known to respond directly to increased atmospheric CO2 through increased

photosynthesis and reduced transpiration (Sellers et al (1996a), Field et al (1995)), and may also

change its structure and distribution in response to any associated climate change (Betts et al

(1997)). Thus there is great potential for the biosphere to produce a feedback on the climatic

change due to given human emissions.

Despite this, simulations carried out with General Circulation Models (GCMs) have generally

neglected the coupling between the climate and the biosphere. Instead, vegetation distributions

have been static and atmospheric concentrations of CO2 have been prescribed based on results

from simple carbon cycle models, which neglect the e�ects of climate change (Enting et al (1994)).

This paper describes the inclusion of vegetation and the carbon cycle as interactive elements in a

GCM. The coupled climate-carbon cycle model is able to reproduce key aspects of the observations,

including the global distribution of vegetation types, seasonal and zonal variations in ocean primary

production, and the interannual variability in atmospheric CO2. A transient simulation carried out

with this model suggests that previously neglected climate-carbon cycle feedbacks could signi�cantly

accelerate atmospheric CO2 rise and climate change over the 21st century (Cox et al (2000)).

1 Introduction

The biosphere inuences weather and climate over an extraordinary range of timescales (see table

1). Stomatal pores on plant leaves respond to the environment with a characteristic timescale of

minutes, modifying evapotranspiration and producing detectable impacts on the diurnal evolution of

the boundary layer and near-surface variables. At the other extreme, deep-rooted plants and soil

microbes together amplify the concentration of carbon dioxide in the soil, possibly accelerating the

weathering of silicate rocks which is believed to control the concentration of atmospheric CO2 on

geological timescales (Lovelock and Kump (1994), Berner (1997)). In between are processes operating

over decades to centuries which have great relevance to the issue of human-induced climate change.
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Key amongst these is the uptake of CO2 by the oceans and by land ecosystems, which are together

responsible for absorbing more than half of the current human CO2 emissions (Schimel et al (1996)).

Marine biota modify oceanic uptake by producing carbonate shells which sink to depth, producing a

biological carbon pump. The photosynthetic rates of land plants are enhanced under high CO2, which

acts to increase carbon storage in vegetation and soils.

However, the atmosphere-ocean and atmosphere-land exchanges of carbon are also known to be

sensitive to climate. Warming reduces the solubility of carbon dioxide in sea-water, and increases soil

and plant respiration. As a result, climate warming alone may result in a reduction of carbon storage.

The competition between the direct e�ects of increasing CO2 (which tends to increase carbon storage

in the ocean and on land), and the e�ects of any associated climate warming (which may reduce

carbon storage, especially on land), currently seems to favour CO2 uptake, but how might this change

in the future?

To address this question we have included dynamic vegetation and an interactive carbon cycle in the

Hadley Centre GCM. The structure of the coupled climate-carbon cycle model is described in section

2, and its pre-industrial simulation is analysed in section 3. Results from the �rst transient climate

change simulation are presented in section 4. Finally, the associated uncertainties and implications

are discussed in section 5.

2 Model Description

The model used here (\HadCM3LC") is a coupled ocean-atmosphere GCM with an interactive carbon

cycle and dynamic vegetation. Figure 1 is a schematic showing the coupling of these components, and

the new feedbacks which have been introduced.

a Ocean-Atmosphere GCM (HadCM3L)

The ocean-atmosphere GCM is based on the 3rd generation Hadley Centre coupled model, \HadCM3"

(Gordon et al (2000)), which is one of the �rst 3-D OAGCMs to be used predictively without ux

adjustments. This advance was achieved partly through improved treatments of atmospheric pro-

cesses and subgrid ocean transports (Gent and McWilliams (1990)), but was primarily a result of the

use of an enhanced ocean horizontal resolution of 1.25Æ latitude by 1.25Æ longitude. The additional

computational expense of including an interactive carbon cycle made it necessary to reduce the ocean

resolution to that used in the 2nd generation Hadley Centre model (Johns et al (1997)). Thus, the

model used here has a horizontal resolution for both atmosphere and ocean of 2.5o latitude by 3.75o

longitude, with 19 vertical levels in the atmosphere and 20 in the ocean. The atmospheric physics

and dynamics packages are identical to those used in HadCM3 (Pope et al (2000)), including a new

radiation scheme (Edwards and Slingo (1996)), a parametrization of momentum by convective pro-

cesses (Kershaw and Gregory (1997)), and an improved land surface scheme that simulates the e�ects

of soil water phase change and CO2-induced stomatal closure (Cox et al (1999)). The reduced ocean

resolution required some modi�cation to the di�usion coeÆcients (Gent and McWilliams (1990)) and

to the parametrization of Mediterranean outow, but otherwise the ocean physics is as described by

Gordon et al (2000).

HadCM3L was tested initially without ux adjustments, but the resulting errors in the climate

simulation were found to have unacceptably large impacts on o�ine simulations of the land and

ocean carbon cycles. It was therefore decided to use ux adjustments for this �rst series of coupled

climate-carbon cycle experiments.

b The Hadley Centre Ocean Carbon Cycle Model, HadOCC

The ocean is a signi�cant sink for anthropogenic carbon dioxide, with the suggestion that a third of

anthropogenic emissions of CO2 are taken up by the ocean (Siegenthaler and Sarmiento (1993)). Sur-

face waters exchange CO2 with the atmosphere, but it is the transfer of CO2 to depth that determines
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the capacity of the ocean for long-term uptake. There are several mechanisms for this transfer of CO2

to deeper waters.

Phytoplankton, the plants of the ocean ecosystem, take up CO2 during their growth, converting

the carbon to organic forms. The sinking of a fraction of this organic carbon is a mechanism for

the export of carbon to depth, where it is remineralised back to CO2. This process is known as

the biological pump. Reproducing primary production (growth of phytoplankton) and the export of

organic carbon is important if a model is to represent the fate of CO2 in the ocean.

The Met OÆce ocean model has already been used in the estimate of oceanic uptake of anthro-

pogenic CO2 (Taylor (1995)). This model included only inorganic cycling of carbon, in which a

solubility pump acts to increase the deep ocean carbon concentration. Carbon dioxide is absorbed in

cold, dense polar waters which sink to the deep ocean. Equatorial upwelling allows deep waters to

warm and release carbon dioxide back to the atmosphere. The simulations were found to be useful

in studying carbon uptake, but it was noted that the neglect of ocean biology led to some unrealistic

results such as the incorrect phase of seasonal variations in partial pressure at high latitudes. Ocean

biology was added to the carbon model in order to improve the simulation of carbon uptake and to in-

crease the range of possible simulated responses to scenarios of climate change (Palmer and Totterdell

(in press)).

The resulting model, \HadOCC" (Hadley Centre Ocean Carbon Cycle model), simulates the move-

ments of carbon within the ocean system, including exchange of carbon dioxide gas with the atmo-

sphere, the circulation of dissolved inorganic carbon (known as DIC or tCO2) within the ocean, and

the cycling of carbon by the marine biota. The principle components of the model are handled as trac-

ers within the physical ocean model. They are: (nitrogenous) nutrient, phytoplankton, zooplankton,

detritus, tCO2 and alkalinity.

The air-to-sea ux of carbon dioxide is calculated using standard parametrizations:

FAS = K ( ca � co ) (1)

where ca and co are respectively the partial pressures of CO2 in the atmosphere and ocean at a

given location. K parametrizes the e�ect of the wind speed on the gas transfer velocity, using the

formulation of Wanninkhof (1992). Winds are obtained from the atmospheric model. The partial

pressure of CO2 in the surface waters is determined by solving equations representing the sea water

acid-base system. The expressions for the dissociation constants of carbonic acid, hydrogen carbonate,

boric acid and water and for the solubility of CO2 in seawater are taken from DOE (1994). Using

the salinity dependent boron concentration of Peng (1987), the acid base system is solved using the

method of Bacastow and Keeling (1981) to yield the concentration of carbonic acid and hence the

partial pressure of CO2. The temperature and salinity values used in these calculations are the local

values from the ocean model.

The biological model is an explicit ecosystem model consisting of the four components; nutrient

(assumed to be nitrate), phytoplankton, zooplankton and (sinking) detritus. The complexity of the

model was restricted to just four compartments in order for it to be economical enough for use in

long integrations. This means that the behaviours of many di�erent species and size-fractions are

aggregated into a single component for each of phytoplankton and zooplankton. The model calculates

the ow of nitrogen between the four components of the ecosystem at each grid box, and also computes

the associated transfers of carbon and alkalinity. The carbon ows have no direct e�ect on the

behaviour of the ecosystem as growth of phytoplankton is not limited by availability of carbon.

The phytoplankton population changes as a result of the balance between growth, which is con-

trolled by light level and the local concentration of nutrient, and mortality, which is mostly as a result

of grazing by zooplankton. Detritus, which is formed by zooplankton excretion and by phyto- and

zooplankton mortality, sinks at a �xed rate and slowly remineralises to reform nutrient and dissolved

inorganic carbon. Thus both nutrient and carbon are absorbed by phytoplankton near the ocean

surface, pass up the food chain to zooplankton, and are eventually remineralised from detritus in the

deeper ocean.
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c The Dynamic Global Vegetation Model, TRIFFID

Over the last decade a number of groups have developed equilibrum biogeography models which suc-

cessfully predict the global distribution of vegetation based on climate (Prentice et al (1992), Wood-

ward et al (1995)). Such models have been coupled \asynchronously" to GCMs in order to quantify

climate-vegetation feedbacks. This involves an iterative procedure in which the GCM calculates the

climate implied by a given land-cover, and the vegetation model calculates the land-cover implied

by a given climate. The process is repeated until a mutual climate-vegetation equilibrium is reached

(Claussen (1996), Betts et al (1997)). Such techniques have yielded interesting results, but are not

appropriate for simulating transient climate change for which the terrestrial biosphere may be far from

an equilibrium state.

In order to fully understand the role of climate-vegetation feedbacks on these timescales we need

to treat the land-cover as a interactive element, by incorporating dynamic global vegetation models

(DGVMs) within climate models. The earliest DGVMs were based on bottom-up \gap" forest models,

which explicitly model the growth, death and competition of individual plants (Friend et al (1993),

Post and Pastor (1996)). Such models can produce very detailed predictions of vegetation responses

to climate, but they are computationally expensive for large-scale applications. Also, GCM climates

are not likely to be sensitive to the details of the species or age composition of the land-cover. For

this study it is more appropriate to adopt a \top-down" DGVM approach, in which the relevant land-

surface characteristics, such as vegetated fraction and leaf area index, are modelled directly (Foley et

al (1996)). A model of this type, called \TRIFFID" (\Top-down Representation of Interactive Foliage

and Flora Including Dynamics"), has been developed at the Hadley Centre for use in these coupled

climate-carbon cycle simulations.

TRIFFID de�nes the state of the terrestrial biosphere in terms of the soil carbon, and the structure

and coverage of �ve plant functional types (Broadleaf tree, Needleleaf tree, C3 grass, C4 grass and

shrub) within each model gridbox. The areal coverage, leaf area index and canopy height of each type

are updated based on a carbon balance approach, in which vegetation change is driven by net carbon

uxes calculated within the \MOSES 2" land surface scheme. MOSES 2 is a tiled version of the land

surface scheme described by Cox et al (1999), in which a separate surface ux and temperature is

calculated for each of the land-cover types present in a GCM gridbox. In its standard con�guration,

MOSES 2 recognises the �ve TRIFFID vegetation types plus four non-vegetation land-cover types

(bare soil, inland water, urban areas and land ice). Carbon uxes for each of the vegetation types

are derived using the coupled photosynthesis-stomatal conductance model developed by Cox et al

(1998), which utilises existing models of leaf-level photosynthesis in C3 and C4 plants (Collatz et al

(1991), Collatz et al (1992)). Plant respiration is broken-down into a growth component, which is

proportional to the photosynthetic rate, and a maintenance component which is assumed to increase

exponentially with temperature (q10 = 2). The resulting rates of photosynthesis and plant respiration

are dependent on both climate and atmospheric CO2 concentration. Therefore, with this carbon-

balance approach, the response of vegetation to climate occurs via climate-induced changes in the

vegetation to atmosphere uxes of carbon.

Figure 2 is a schematic showing how the MOSES 2 land-surface scheme is coupled to TRIFFID

for each vegetation type. The land-atmosphere uxes (above the dotted line) are calculated within

MOSES 2 on every 30 minute GCM timestep and time-averaged before being passed to TRIFFID

(usually every 10 days). TRIFFID (below the dotted line of �gure 2) allocates the average net primary

productivity over this coupling period into the growth of the existing vegetation (leaf, root and wood

biomass), and to the expansion of the vegetated area in each gridbox. Leaf phenology (bud-burst and

leaf drop) is updated on an intermediate timescale of 1 day, using accumulated temperature-dependent

leaf turnover rates. After each call to TRIFFID the land surface parameters required by MOSES 2

(e.g. albedo, roughness length) are updated based on the new vegetation state, so that changes in

the biophysical properties of the land surface, as well as changes in terrestrial carbon, feedback onto

the atmosphere (see �gure 1). The land surface parameters are calculated as a function of the type,

height and leaf area index of the vegetation.
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The natural land-cover evolves dynamically based on competition between the types, which is

modelled using a Lotka-Volterra approach and a (tree-shrub-grass) dominance hierarchy. We also

prescribe some agricultural regions, in which grasslands are assumed to be dominant. Carbon lost

from the vegetation as a result of local litterfall or large-scale disturbance, is transferred into a soil

carbon pool, where it is broken down by microorganisms which return CO2 to the atmosphere. The

soil respiration rate is assumed to double for every 10 K warming (Raich and Schlesinger (1992)), and

is also dependent on the soil moisture content in the manner described by McGuire et al (1992).

3 Preindustrial State

a Spin-up Methodology

The present day natural carbon sink of about 4 GtC yr�1 is a small fraction of the gross carbon

exchanges between the Earth's surface and the atmosphere. It is therefore vitally important to reach

a good approximation to a pre-industrial equilibrium, since even a small model drift could easily swamp

this signal in a climate change experiment. With this in mind, a spin-up methodology was designed to

obtain a carbon cycle equilibrium to within �10% of the current natural carbon sink (i.e. �0.4 GtC

yr�1). The methodology was required to produce a consistent climate-carbon cycle equilibrium state,

without the computational expense of running the entire coupled model for thousands of simulated

years.

Table 2 shows the multistage process used. The �rst two stages are primarily concerned with

producing an equilibrium distribution of dissolved carbon in the ocean model (Jones and Palmer

(1998)). In the �rst stage the ocean-atmosphere GCM was integrated forward for approximately 60

years, using a prescribed \pre-industrial" CO2 concentration of 290 ppmv. The initial ocean physical

state was based on temperature and salinity data from the Levitus climatology (Levitus and Boyer

(1994), Levitus et al (1994)). During this stage the modelled sea surface temperature and salinity

were relaxed to the climatology (i.e. \Haney forced"), with a relaxation timescale of about 2 weeks.

This stage also included the TRIFFID dynamic global vegetation model used in \equilibrium" mode.

Vegetation and soil variables were updated iteratively every 5 model years, using an implicit scheme

with a long internal timestep (� 1000 years). This approach is equivalent to a Newton-Raphson

algorithm for approaching equilibrium, and o�ine tests have shown that it is very e�ective in producing

equilibrium states for the slowest variables (e.g. soil carbon and forest cover).

The second stage was a long run of approximately 2000 years in ocean-only mode using the distorted

physics technique (Bryan (1984), Wood (1998)), which allows a lengthened timestep of 24 hours to

be used. This enables a long period to be simulated quickly and cheaply, allowing the deep ocean

structure to come close to equilibrium. Climatological temperature and salinity data were again used

to Haney force the ocean-surface with the same coeÆcients as before. Other uxes were derived from

monthly mean values calculated from the last ten years of the coupled phase, with daily variability

imposed from the last year of the run. The daily variability was found to be crucial in allowing

realistic mixed layer depths to be maintained in the ocean only phase (Jones and Palmer (1998)). The

forcing uxes used were; penetrative solar heat ux, non-penetrative heat ux, wind mixing energy,

wind stress (N-S and E-W components) and net fresh water ux (precipitation minus evaporation).

The driving uxes were modi�ed to include the e�ects of sea-ice in the coupled phase, allowing the

ocean-only phase to be carried out without an interactive sea-ice model.

In the third stage the ocean was recoupled to the atmosphere model, using the ocean state from the

end of the ocean-only phase, but still Haney-forcing the ocean surface state back to the climatology.

TRIFFID was switched to its default dynamic mode, in which the vegetation cover is updated every

10 days. A 90-year run was carried out to allow the coupled model to adjust to the introduction of

short timescale vegetation variability, and to de�ne heat and freshwater \ux-adjustments" for the

subsequent stages.

Stage 4 saw the introduction of internally-generated SST variability for the �rst time, as the Haney

forcing terms were switched-o� and replaced by these �xed adjustments. This was the point when the
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impact of El Nino events on the carbon balance became obvious (Jones et al (submitted)). A 60-year

simulation was completed to give the system ample time to adjust.

Finally, the atmospheric CO2 was treated as an interactive variable in stage 5. All previous stages

had used a prescribed CO2 concentration. A short fully-interactive climate-carbon cycle run (of about

20 years) was carried out to ensure that there were no signi�cant drifts in the atmospheric CO2

concentration. Results from the subsequent pre-industrial simulation of 100 years are discussed in the

next section.

b The Mean Pre-Industrial State

b.1 The Ocean Carbon Cycle

HadOCC explicitly models the ocean ecosystem in order to represent the biological pump. The two

main processes of this pump are primary production and the sinking ux of organic carbon and the

HadOCC model has been shown to compare well to observations for both these processes (Palmer and

Totterdell (in press)). The global annual total production in the model is about 53 GtC yr�1, while

recent satellite-derived estimates are 39.4 Antoine et al (1996), 48.5 and 49.4 Longhurst et al (1990)

GtC yr�1. Considering these estimates refer to net production (including respiration losses) and the

model's �gure is for gross production, the model is well within the range of observational estimates.

Figure 3 shows the zonal total of primary production for each month averaged over the 100 years

of the control simulation. Also shown for comparison is the zonal total of primary production from

the climatology of Antoine et al (1996). The seasonal cycle in primary production is captured by

the ocean ecosystem model. The magnitude in the model is higher than suggested by Antoine et al

(1996) but that study has the lowest total production of the three climatologies mentioned above.

In the equatorial Paci�c the model overestimates primary production. This is a result of excessive

upwelling of nutrients at the equator, but also the model does not represent more complex limitations

on production. These include, for example, iron limitation and ammonia inhibition, which have been

suggested as important processes in High Nutrient Low Chlorophyll (HNLC) regions such as the

equatorial Paci�c (Loukas et al (1997)).

c The Land Carbon Cycle

The performance of the terrestrial component is best assessed by comparing its simulation of the

global distribution of vegetation types to that observed. Figure 4 shows the fractional coverage of

the 5 TRIFFID plant functional types and bare soil from the end of the pre-industrial control. The

locations of the major forests and deserts are generally well captured. However, the boreal forests tend

to be a little too sparse, especially in Siberia where the atmospheric model has a cold bias in winter.

The absence of a cold-deciduous plant functional type in TRIFFID may also be a contributary factor

here. If anything, the simulated tropical forests are too extensive, perhaps because of the neglect

of various disturbance factors (e.g. �re and anthropogenic deforestation). This TRIFFID simulation

includes some prescribed agricultural regions, in which grasslands are assumed to dominate (elsewhere

forests dominate where they can survive). This ensures that the heavily cultivated mid-latitudes are

simulated as grasslands. The competition between C3 and C4 grasses is simulated in the model,

producing a dominance of C4 in the semi-arid tropics and a dominance of C3 elsewhere. However, this

balance may be expected to shift as atmospheric CO2 increases.

Panel g of �gure 4 compares this simulation to the IGBP land-cover dataset derived from remote

sensing. The fractional agreement in each gridbox, fagree, is calculated as the maximum overlap

between the vegetation fractions from the model (�mod) and the observations (�obs):

fagree = 1�

5X
i=1

j�mod

i � �obsi j (2)

where i labels the vegetation type. By this measure, TRIFFID reproduces 63% of the IGBP land-cover

in this coupled simulation. The level of agreement is lower in the regions of north-east Eurasia which
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are dominated by cold-deciduous spruce forests and in the savanna regions of Africa, but higher in

the mid-latitudes and the tropical forests.

The simulated global totals for vegetation carbon (493 GtC) and soil carbon (1180 GtC) are

consistent with other studies (Schimel et al (1996), Zinke et al (1986), Cramer et al (in press)). The

integrated land net primary productivity (NPP) associated with this vegetation distribution is about

60 Gt C yr�1, which is also within the range of other estimates (Warnant et al (1994), Cramer et al

(in press)) and almost identical to the value suggested by Houghton et al (1996) for the present-day

carbon cycle. Since the value simulated here corresponds to a \pre-industrial" CO2 concentration of

290 ppmv, we expect slightly higher NPP to be simulated for the present-day.

d Interannual Variability

Figure 5 shows the annual mean CO2 ux to the atmosphere over 100 years of the pre-industrial

control simulation (lower panel), along with the contributions to this from the ocean and the terrestrial

biosphere. The 20 year running mean of the total ux lies within the quality bounds of �0.4 GtC yr�1

which we required for the equilibrium. It is also very clear that the modelled carbon cycle displays

signi�cant interannual variability about this equilibrium state. Variability in the total ux, and thus

the atmospheric CO2 concentration, is dominated by the contribution from the terrestrial biosphere.

The net uxes from the ocean and the land tend to have opposite signs, but the magnitude of the

variability in the land uxes is far larger.

This interannual variability in the modelled carbon cycle is found to be correlated with the El

Nino Southern Oscillation (ENSO). This is illustrated by considering the Nino3 index. The Nino3

index is a measure of the ENSO cycle and is the sea surface temperature (SST) anomaly over the

region 150oW-90oW, 5oS-5oN in the Equatorial Paci�c. Under El Nino conditions, there is reduced

ocean upwelling, less cooler water being brought to the surface, a positive SST anomaly and positive

Nino3 index. Conversely La Nina conditions are characterised by greater upwelling, a negative SST

anomaly and negative Nino3 index. When the Nino3 index is positive the model simulates an increase

in atmospheric CO2 resulting from the combined e�ect of the terrestrial biosphere acting as a large

source, which is only partially o�set by a reduced outgassing from the tropical Paci�c. The opposite

is true during the La Nina phase.

How realistic is this ENSO-driven variability in CO2? In order to answer this question Jones

et al (submitted) analysed the long-term records of atmospheric CO2 concentration taken at Mauna

Loa, Hawaii since 1958 (Keeling 1989). In these records, superimposed on the seasonal cycle and the

long-term upward trend is interannual variability which cannot be readily explained by changes in

fossil fuel burning. The correlation between these interannual changes in atmospheric CO2 and the

ENSO cycle was �rst reported in the 1970s (Bacastow 1976, Bacastow et al 1980). Figure 6 plots

the anomaly in the growth rate of atmospheric CO2 against the Nino3 index, from the pre-industrial

control simulation and the Mauna Loa observations. In both cases the atmospheric CO2 anomaly

is positive during El Nino (positive Nino3) and decreases during La Nina (negative Nino3). The

model appears to slightly overestimate the interannual variability in CO2 because the amplitude of its

internally-generated ENSO is too large.

The gradients of the blue dashed and red dashed lines represent the sensitivity of the carbon

cycle to ENSO, as given by the model and the observations respectively. Here, we have excluded

observations which immediately follow major volcanic events (black stars), since during these years

the carbon cycle will also have been perturbed by the induced tropospheric cooling (Jones and Cox

(in press)). These lines are almost parallel, suggesting that the modelled carbon cycle has a realistic

sensitivity to ENSO. This is most important, since a realistic response to internally-generated climate

anomalies is required before we can have any con�dence in using the model to predict the response of

the carbon cycle to anthropogenic forcing.
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4 A First Transient Climate-Carbon Cycle Simulation

A transient coupled climate-carbon cycle simulation was carried out for 1860-2100, starting from the

pre-industrial control state, and using CO2 emissions as given by the IS92a scenario (Houghton et al

(1992)). These emissions included a contribution from net land-use change (e.g. deforestation, forest

regrowth), since TRIFFID does not yet model the e�ect of these interactively. The concentrations of

the other major greenhouse gases were also prescribed from IS92a, but the radiative e�ects of sulphate

aerosols were omitted in this �rst simulation.

Figure 7 shows the changing carbon budget in the fully coupled run (Cox et al (2000)). The

continuous black line represents the simulated change in CO2 since 1860 (in GtC), and the coloured

lines show the contribution to this change arising from emissions (red), and changes in the carbon

stored on the land (green) and in the oceans (blue). Net uptake by the land or the ocean since 1860,

is represented by negative values, since this acts to reduce the change in atmospheric carbon. The

gradients of these lines are equivalent to the annual mean uxes in GtC yr�1.

The dotted black line shows the change in atmospheric carbon given by the standard IS92a CO2

concentration scenario, which has been often used to drive GCM climate predictions. This scenario was

calculated with o�ine carbon cycle models which neglected the e�ects of climate change (Enting et al

(1994)). A simulation with our coupled climate-carbon cycle model produced similar increases in CO2

when the carbon cycle components were arti�cially isolated from the climate change. The di�erence

between the continuous black line and the dashed black line therefore represents an estimate of the

e�ect of climate-carbon cycle feedbacks on atmospheric CO2.

a 1860-2000

From 1860 to 2000, the simulated stores of carbon in the ocean and on land increase by about

100 GtC and 75 GtC respectively (�gure 7). The land uptake is largely due to CO2-fertilisation of

photosynthesis, which is partially counteracted by increasing respiration rates in the warming climate

(Cramer et al (in press)). The ocean uptake is also driven by the increasing atmospheric CO2, which

results in a di�erence in the partial pressure of CO2 across the ocean surface (equation 1). During this

period, both components of the modelled carbon cycle are therefore producing a negative feedback on

the CO2 increase due to anthropogenic emissions.

However, the modelled atmospheric CO2 is 15 to 20 ppmv too high by the present day, which

corresponds to a timing error of about 10 years. Possible reasons for this include an overestimate

of the prescribed net land-use emissions and the absence of other important climate forcing factors.

The modelled global mean temperature increase from 1860 to 2000 is about 1.4 K (�gure 10b), which

is higher than observed (Nicholls et al (1996)), This may have led to an excessive enhancement of

respiration uxes over this period. The overestimate of the historical warming is believed to be due

to the neglect of the cooling e�ects of anthropogenic aerosols (Mitchell et al (1995)).

We have recently completed a further coupled climate-carbon cycle experiment which includes the

e�ects of aerosols from volcanoes, as well as those from human activity, along with the additional

radiative forcing factor from solar variability. This experiment produces a much better �t to the

observed increase in global mean temperature, halving the overestimate of current CO2 to 5-10 ppmv.

The remaining \error" is almost certainly within the bounds of uncertainties associated with the

prescribed net land-use emissions.

Nevertheless, the coupled model does a good job of simulating the recent carbon balance. For the

20 years centred on 1985, the mean land and ocean uptake are 1.5 and 1.6 GtC yr�1 respectively (c.f.

best estmates for the 1980s of 1.8�1.8 and 2.0�0.8 GtC yr�1 (Schimel et al (1996))).

b 2000-2100

The simulated atmospheric CO2 diverges much more rapidly from the standard IS92a concentration

scenario in the future. The ocean takes up about 400 GtC over this period, but at a rate which

is assymptoting towards 5 GtC yr�1 by 2100. This reduced eÆciency of oceanic uptake is partly a
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consequence of the non-linear dependence of the partial pressure of dissolved CO2 (pCO2) on total

ocean carbon concentration (TCO2), but may also have contributions from climate change (Sarmiento

et al (1998)). Although the thermohaline circulation weakens by about 25% from 2000 to 2100, this is

much less of a reduction than seen in some previous simulations (Sarmiento and Quere (1996)), and

the corresponding impact on ocean carbon uptake is less signi�cant. In this experiment, increased

thermal strati�cation due to warming of the sea-surface suppresses upwelling, which reduces nutri-

ent availability and lowers primary production by about 5%. However, ocean-only tests suggest a

small climate-change impact on oceanic carbon uptake, since this reduction in the biological pump is

compensated by reduced upwelling of deepwaters which are rich in TCO2.

The most marked impacts of climate-carbon cycle feedbacks are seen in the terrestrial biosphere,

which switches from being a weak sink to become a strong source of carbon from about 2050. (Note

how the gradient of the green line in �gure 7 becomes positive from this time.) There are two main

reasons for this. Firstly, the GCM predicts an appreciable drying and warming in the Amazon basin,

which results in \dieback" of the tropical rainforest and a release of carbon to the atmosphere. Similar

CO2-induced climate changes have been predicted by other GCMs for this region (Gedney et al (2000)),

but the magnitude of these seems largest in the latest Hadley Centre models. This may be partly

because the Hadley Centre models include CO2-induced stomatal closure, which seems particularly to

reduce evaporation and rainfall in Amazonia (Cox et al (1999)). A similar terrestrial response was also

produced by a very di�erent ecosystem model when driven o�ine by anomalies from HadCM3 (White

et al (1999)). We might expect an even more dramatic change in HadCM3LC since for the �rst time

the climate-induced dieback of the forest is able to produce further reductions in precipitation and

increases in surface temperature, via biophysical feedbacks.

The second reason for the sink-to-source transition in the terrestrial biosphere is a widespread loss

of soil carbon. Broadly speaking, a rise in CO2 alone tends to increase the rate of photosynthesis

and thus terrestrial carbon storage, providing other resources are not limiting (Melillo et al (1995),

Cao and Woodward (1998)). However, plant maintenance and soil respiration rates both increase with

temperature. As a consequence, climate warming (the indirect e�ect of a CO2 increase) tends to reduce

terrestrial carbon storage (Cramer et al (in press)), especially in the warmer regions where an increase

in temperature is not bene�cial for photosynthesis. At low CO2 concentrations the direct e�ect of CO2

dominates, and both vegetation and soil carbon increase with atmospheric CO2. However, as CO2

rises further, terrestrial carbon begins to decrease, since the direct e�ect of CO2 on photosynthesis

saturates but the speci�c soil respiration rate continues to increase with temperature. The transition

between these 2 regimes occurs abruptly at around 2050 in this experiment.

Figure 8 shows how zonal mean soil and vegetation carbon change through the simulation. The

model suggests that carbon accumulation in natural ecosystems to date has occurred in the soils and

vegetation of the northern mid-latitudes, and in the vegetation of the tropics. In the simulation,

carbon continues to be accumulated in the northern hemisphere vegetation, but at a reducing rate

from about 2070 onwards. The loss of tropical biomass beginning in about 2030 is very clearly shown

in �gure 8a. The rapid reduction in soil carbon seems to start around 2050 in the tropics, and around

2070 in the mid-latitudes. Note however, that soil carbon continues to increase in the far north until

the end of the run.

Figure 9 shows maps of the changes in vegetation and soil carbon from 1860 to 2100. The increase

of biomass in the northern hemisphere can be seen to arise from a thickening of the boreal forests. The

reduction in Amazonian vegetation is also obvious. Losses of soil carbon, relative to 1860, are more

widespread with reductions in most areas south of 60ÆN. South-east Asia, and the tundra-covered

areas of Siberia and Alaska, are amongst the few regions to have more soil carbon in 2100 than in

1860.

Overall, the land carbon storage decreases by about 170 GtC from 2000 to 2100, accelerating

the rate of CO2 increase in the next century. By 2100 the modelled CO2 concentration is about

980 ppmv in the coupled experiment, which is more than 250 ppmv higher than the standard IS92a

scenario (�gure 10a). This di�erence is equivalent to about 500 GtC (rather than 170 GtC), because

the standard scenario implicitly assumes a continuing terrestrial carbon sink, accumulating to about
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300-400 GtC by about 2100.

As a result of these climate-carbon cycle feedbacks, global-mean and land-mean temperatures

increase from 1860 to 2100 by about 5.5K and 8K respectively, rather than about 4K and 5.5K, under

the standard conventration scenario (�gure 10b).

5 Discussion

These numerical experiments demonstrate the potential importance of climate-carbon cycle feedbacks,

but the magnitude of these in the real Earth system is still highly uncertain. The strongest feedbacks,

and therefore the greatest uncertainties, seem to be associated with the terrestrial biosphere. The

cause of the present day land carbon sink is still in doubt, with CO2-fertilisation, nitrogen deposition

and forest regrowth all implicated in certain regions. The location of this sink is even more debatable,

perhaps because this is subject to great interannual variability. Whilst increases in atmospheric CO2

are expected to enhance photosynthesis (and reduce transpiration), the associated climate warming

is likely to increase plant and soil respiration. Thus there is a competition between the direct e�ect

of CO2, which tends to increase terrestrial carbon storage, and the indirect e�ect, which may reduce

carbon storage.

The outcome of this competition has been seen in a range of DGVMs (Cramer et al (in press)), each

of which simulate reduced land carbon under climate change alone and increased carbon storage with

CO2 increases only. In most DGVMs, the combined e�ect of the CO2 and associated climate change

results in a reducing sink towards the end of the 21st century, as CO2-induced fertilisation begins to

saturate but soil respiration continues to increase with temperature. The manner in which soil and

plant respiration respond in the long-term to temperature is a key uncertainty in the projections of

CO2 in the 21st century (Giardina and Ryan (2000)).

a Sink-to-Source Transitions in the Terrestrial Carbon Cycle

In this sub-section we introduce a simple terrestrial carbon balance model to demonstrate how the

conversion of a land CO2 sink to a source is dependent on the responses of photosynthesis and respi-

ration to CO2 increases and climate warming. We consider the total carbon stored in vegetation and

soil, CT , which is increased by photosynthesis, �, and reduced by the total ecosystem respiration, R:

dCT

dt
= ��R (3)

where � is sometimes called Gross Primary Productivity (GPP), and R represents the sum of the

respiration uxes from the vegetation and the soil. In common with many others (McGuire et al

(1992), Collatz et al (1991), Collatz et al (1992), Sellers et al (1996b), Cox et al (1998)), we assume

that GPP depends directly on the atmospheric CO2 concentration, Ca, and the surface temperature,

T (in ÆC):

� = �max

�
Ca

Ca + C0:5

�
f(T ) (4)

where �max is the value which GPP assymptotes towards as Ca ! 1, C0:5 is the \half-saturation"

constant (i.e. the value of Ca for which � is half this maximum value), and f(T ) is an arbitrary

function of temperature. We also assume that the total ecosystem respiration, R, is proportional to

the total terrestrial carbon, CT . The speci�c respiration rate (i.e. the respiration per unit carbon)

follows a \Q10" dependence, which means that it increases by a factor of q10 for a warming of T by

10ÆC. Thus the ecosystem respiration rate is given by:

R = r CT q
(T�10)=10
10 (5)

where r is the speci�c respiration rate at T = 10ÆC. It is more usual to assume separate values of r

and q10 for di�erent carbon pools (e.g. soil/vegetation, leaf/root/wood), but our simpler assumption
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will still o�er good guidance as long as the relative sizes of these pools do not alter signi�cantly under

climate change. Near surface temperatures are expected to increase approximately logarithmically

with the atmospheric CO2 concentration, Ca (Huntingford and Cox (2000)):

�T =
�T2�CO2

log 2
log

�
Ca

Ca(0)

�
(6)

where �T is the surface warming, �T2�CO2
is the climate sensitivity to doubling atmospheric CO2,

and Ca(0) is the initial CO2 concentration. We can use this to eliminate CO2 induced temperature

changes from equation 5:

R = r0 CT

�
Ca

Ca(0)

��
(7)

where r0CT is the initial ecosystem respiration (i.e. at Ca = Ca(0)) and the exponent � is given by:

� =
�T2�CO2

10

log q10

log 2
(8)

We can now use equations 3, 4 and 7 to solve for the equilibrium value of terrestrial carbon, C
eq

T
:

C
eq

T
= �max

�
Ca

Ca + C0:5

� �
Ca(0)

Ca

�� f(T )

r0
(9)

The land will tend to amplify CO2-induced climate change if C
eq

T
decreases with increasing atmospheric

CO2 (i.e. dC
eq

T
=dCa < 0). Di�erentiating equation 9 with respect to Ca yields:

dC
eq

T

dCa

= C
eq

T

�
(1� ��)

Ca

�

1

Ca + C0:5

�
(10)

where:

�� =
�T2�CO2

log 2

�
log q10

10
�

1

f

df

dT

�
: (11)

The condition for the land to become a source of carbon under increasing CO2 is therefore:

Ca >
1� ��

��
C0:5 (12)

This means that there will always be a critical CO2 concentration beyond which the land becomes a

source, as long as:

(i) CO2 fertilisation of photosynthesis saturates at high CO2, i.e. C0:5 is �nite.

(ii) �� > 0, which requires:

(a) climate warms with increasing CO2, i.e. �T2�CO2
> 0

(b) respiration increases more rapidly with temperature than GPP, i.e.

log q10

10
>

1

f

df

dT
: (13)

Conditions (i) and (ii)(a) are satis�ed in the vast majority of climate and terrestrial ecosystem models.

Detailed models of leaf photosynthesis indicate that C0:5 will vary with temperature from about

300 ppmv at low temperatures, up to about 700 ppmv at high temperatures (Collatz et al (1991)).

Although there are di�erences in the magnitude and patterns of predicted climate change, all GCMs

produce a warming when CO2 concentration is doubled. The global mean climate sensitivity produced

by these models ranges from 1.5K to 4.5K (Houghton et al (1996)), but mean warming over land is
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likely to be a more appropriate measure of the climate change experienced by the land biosphere. We

estimate a larger range of 2K < �T2�CO2
< 7K, because the land tends to warm more rapidly than

the ocean (Huntingford and Cox (2000)).

There is considerable disagreement over the likely long-term sensitivity of respiration uxes to

temperature, with some suggesting that temperature-sensitive \labile" carbon pools will soon become

exhausted once the ecosystem enters a negative carbon balance (Giardina and Ryan (2000)). However,

condition (ii)(b) is satis�ed by the vast majority of existing land carbon cycle models, and seems to be

implied (at least on the 1-5 year timescale) by climate-driven interannual variability in the measured

atmospheric CO2 concentration (Jones and Cox (in press), Jones et al (submitted)).

Most would therefore agree that the terrestrial carbon sink has a �nite lifetime, but the length of

this lifetime is highly uncertain. We can see why this is from our simply model (equation 12). The

critical CO2 concentration is very sensitive to �� which is itself dependent on the climate sensitivity,

and the di�erence between the temperature dependences of respiration and GPP (equation 11).

We expect the temperature sensitivity of GPP to vary regionally, since generally a warming is

bene�cial for photosynthesis in mid and high latitudes (i.e. df=dT > 0), but not in the tropics where

the existing temperatures are near optimal for vegetation (i.e df=dT � 0). As a result, we might

expect global mean GPP to be only weakly dependent on temperature (df=dT � 0). We can therefore

derive a range for ��, based on plausible values of climate sensitivity over land (2K < �T2�CO2
<

7K) and respiration sensitivity (1.5 < q10 < 2.5). This range of 0:1 < �� < 0:9, translates into a

critical CO2 concentration which is somewhere between 0.1 and 9 times the half-saturation constant

(equation 12). Therefore on the basis of this simple analysis the range of possible critical CO2 values

spans almost 2 orders of magnitude. Evidently, the time at which the sink-to-source transition will

occur is extremely sensitive to these uncertain parameters. This may explain why many of the existing

terrestrial models do not reach this critical point before 2100 (Cramer et al (in press)).

Fortunately we can reduce the uncertainty range further. Critical CO2 values which are lower than

the current atmospheric concentration are not consistent with the observations, since the \natural"

land ecosystems appear to be a net carbon sink rather than a source at this time (Schimel et al (1996)).

For a typical half-saturation constant of C0:5 = 500 ppmv this implies that all combinations of q10 and

�T2�CO2
which yield values of �� < 0:6 are unrealistic. Also, sensitivity tests with our coupled model

indicate that q10 = 2 provides an almost optimal �t to the observed variability in atmospheric CO2 due

to ENSO (Jones et al (submitted)) and volcanic eruptions (Jones and Cox (in press)), suggesting that

the probability distribution for possible q10 values is peaked quite sharply about this value. Similarly

the complete range of climate sensitivity values are not all equally probable, since the most advanced

GCMs tend to produce values clustered around the centre of the range. It is therefore meaningful

to produce a central estimate for the critical CO2 value. Using q10 = 2, C0:5 = 500 ppmv, and

�T2�CO2
= 4:8K (which is consistent with the warming over land in our coupled model,) yields a

critical CO2 value of about 550 ppmv, which is remarkably close to the sink-to-source transition seen

in our experiment (see �gures 7 and 10a).

We draw two main conclusions from this section. The recognised uncertainties in climate and

respiration sensitivity imply a very large range in the critical CO2 concentration beyond which the

land will act as a net carbon source. However, the central estimates for these parameters suggest a

signi�cant probability of this critical point being passed by 2100 in the real Earth system, under a

\business as usual" emissions scenario, in agreement with the results from our coupled climate-carbon

cycle model.

6 Conclusions

The ocean and the land ecosystems are currently absorbing about half the human emissions of CO2,

but many of the uptake processes are known to be sensitive to climate. GCM climate change predic-

tions typically exclude interactions between climate and the natural biosphere, since they use �xed

vegetation distributions and CO2 concentrations which are calculated o�ine neglecting climate change.

We have developed a 3D coupled climate-carbon cycle model (\HadCM3LC"), by coupling models of
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the ocean carbon cycle (\HadOCC") and the terrestrial carbon cycle (\TRIFFID") to a version of

the Hadley Centre GCM. The methodology developed to spin-up the model has been shown to yield a

pre-industrial equilibrium to good accuracy. The climate-carbon cycle model is able to reproduce key

aspects of the observations, including the global distribution of vegetation types, seasonal and zonal

variations in ocean primary production, and the interannual variability in atmospheric CO2.

A transient simulation has been carried out with this model for 1860-2100 using the IS92a (\busi-

ness as usual") CO2 emissions scenario. This experiment suggests that carbon cycle feedbacks could

signi�cantly accelerate atmospheric CO2 rise and climate change over the next 100 years. The mod-

elled terrestrial biosphere switches from being an overall sink for CO2 to become a strong source from

about 2050, as soil carbon starts to decline sharply and local climate change leads to signi�cant loss

of the Amazon rainforest. By 2100 the modelled CO2 is more than 250 ppmv higher than that usually

assumed in GCM climate-change experiments. The corresponding global-mean warming for 1860-2100

is about 5.5 K, as compared to 4 K without carbon cycle feedbacks.

The quantitative aspects of this experiment must be treated with caution, owing to uncertainties

in the components of the coupled model. In particular, climate models di�er in their responses to

greenhouse gases, and terrestrial carbon models di�er in their responses to climate change (VEMAP-

Members (1995) Cramer et al (in press)). However, we have presented a simple analysis to demonstrate

that a sink-to-source transition of the terrestrial biosphere is assured beyond some critical atmospheric

CO2 concentration, provided that a few simple conditions apply. Qualitatively then, the eventual

saturation of the land carbon sink and its conversion to a carbon source, is supported by our existing

understanding of terrestrial ecosystem processes.

Unfortunately, the precise point at which the land biosphere will start to provide a positive feedback

cannot yet be predicted with certainty. This depends on a number of poorly understood processes, such

as the long-term response of photosynthesis and soil respiration to increased temperatures (Giardina

and Ryan (2000)), and the possible acclimation of photosynthesis to high CO2. Our results suggest

that accurate prediction of climate change over the 21st century, will be as dependent on advances

in the understanding and modelling of these physiological and ecological processes, as it is on the

modelling of the physical processes currently represented in GCMs.
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Process Feedback Mechanism Timescale

Stomatal Response Surface Energy Partitioning minutes

Leaf Seasonality Surface Characteristics months-seasons

DMS from Plankton Cloud Albedo months-years

Vegetation Distribution Surface Characteristics 1-103 years

Land Carbon Storage Atmospheric CO2 1-103 years

Ocean Carbon Storage Atmospheric CO2 10-104 years

Enhanced Rock Weathering Atmospheric CO2 >105 years

Table 1: Biospheric feedbacks on weather and climate

Physical Model Biology Atmos. Model

Mode Ocean Forcing HadOCC TRIFFID CO2 years

Coupled Haney forced no equil. �xed �60

Ocean-only Haney forced yes no �xed �2000

Coupled Haney forced yes dynamic �xed �90

Coupled ux-adjusted yes dynamic �xed �60

Coupled ux-adjusted yes dynamic Interactive �20

Table 2: The stages used to spin-up the coupled model to its pre-industrial equilibrium.
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Figure 2: Schematic showing TRIFFID carbon ows for each vegetation type. Processes above the

dotted line are uxes calculated in the MOSES 2 land surface scheme every atmospheric model timestep

(� 30 minutes). In dynamic mode, TRIFFID updates the vegetation and soil carbon every 10 days

using time-averages of these uxes.
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Figure 3: Ocean primary production as a function of latitude and month of the year. (a) Mean over

100 years of the control period. (b) The Antoine et al. (1996) satellite-derived climatology.
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Figure 4: Annual mean fractional coverage of vegetation types ((a)-(e)) and bare soil (f) from 100

years of the pre-industrial control simulation. Plot (g) compares this simulation with the fractions of

broadleaf tree, needleleaf tree, grass (C3 + C4) and shrub from the IGBP land-cover dataset. The

numbers in brackets are means over the entire land area.
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Figure 5: The total ux of CO2 to the atmosphere as a function of year during the control period,

along with contributions to this from the ocean and the terrestrial biosphere. The thin lines show the

annual mean data and the thick lines are the 20 year running means of the annual data. In the plot

for total ux, the dashed lines indicate the quality criterion required for the pre-industrial equilibrium

of �0.4 GtC yr�1.

23



Figure 6: Anomaly in the growth rate of atmospheric CO2 versus Nino 3 index (i.e. the annual

mean sea-surface temperature anomaly in the tropical Paci�c, 150ÆW- 90ÆW, 5ÆS-5ÆN) from the pre-

industrial control simulation (blue crosses) and the Mauna Loa observations (red stars). The gradients

of the red dashed and blue dashed lines represent the sensitivity of the carbon cycle to ENSO, as given

by the observations and the model respectively. We have excluded observations which immediately

follow major volcanic events (black stars), since during these years the carbon cycle may have been

signi�cantly perturbed by the induced tropospheric cooling.
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Figure 7: Budgets of carbon during the coupled climate-carbon cycle simulation. The continuous

black line shows the simulated change in atmospheric CO2 (in GtC). The red, green and blue lines

show the integrated impact of the emissions, and of land and ocean uxes respectively , with negative

values implying net uptake of CO2. For comparison the standard IS92a atmospheric CO2 scenario is

shown by the black dashed line. Note that the terrestrial biosphere takes up CO2 at a reducing rate

from about 2010 onwards, becoming a net source at around 2050.
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Figure 8: Latitude-time plot of modelled changes in vegetation carbon (a) and soil carbon (b) relative

to 1860.
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Figure 9: Modelled changes in vegetation carbon (a) and soil carbon (b) throughout the transient

simulation (calculated as the di�erence between the mean for the 2090s minus the mean for the

1860s).
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Figure 10: Comparison between the transient simulation with interactive CO2 and dynamic vegetation

(continous lines), and the standard HadCM3 run with prescribed CO2 and �xed vegetation (dashed

lines). (a) Global mean CO2 concentration and (b) global mean and land mean temperature, versus

year.
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